Troubleshooting
Database Connection Issues
Symptom
sqlalchemy.exc.OperationalError: could not connect to serverSolution
- Check PostgreSQL is running:
docker ps | grep postgres- Verify DATABASE_URL is correct:
echo $DATABASE_URL
# Should be: postgresql://user:pass@host:port/dbname- Test connection directly:
psql $DATABASE_URL -c "SELECT 1"- Check PostgreSQL logs:
docker logs <postgres-container-id>AI Service Connection Issues
Symptom
HTTPException: AI service unavailable (502)Solution
- Verify AI service is running:
curl http://localhost:8001/health- Check AI_SERVICE_URL in .env:
echo $AI_SERVICE_URL
# Should match the actual service location- Check network connectivity:
# From API Gateway container
ping ai-service- Review AI service logs:
docker logs <ai-service-container-id>Migration Issues
Symptom
alembic.util.exc.CommandError: Can't locate revision identified by 'abc123'Solution
- Check current migration state:
uv run alembic current
uv run alembic history- Verify migration files exist:
ls alembic/versions/- Reset database (destroys all data):
uv run alembic downgrade base
uv run alembic upgrade head- Create new migration if schema changed:
uv run alembic revision --autogenerate -m "fix schema"Azure Storage Issues
Symptom
HTTPException: Failed to upload image (500)Solution
- Verify Azure connection string:
# Test with Azure CLI
az storage container list --connection-string "$AZURE_STORAGE_CONNECTION_STRING"- Check container exists:
az storage container show \
--name dermadetect-images \
--connection-string "$AZURE_STORAGE_CONNECTION_STRING"- Verify connection string format:
# Should contain:
# - AccountName=...
# - AccountKey=...
# - DefaultEndpointsProtocol=https
echo $AZURE_STORAGE_CONNECTION_STRING- Check Azure Storage logs in portal
Image Upload Issues
Symptom
HTTPException: Incorrect file type (400)Solution
-
Verify file type is supported:
- Allowed:
image/jpeg,image/jpg,image/png
- Allowed:
-
Check base64 encoding:
# Should start with:
...- Verify image size:
- Maximum: 2MB (default, configurable via
MAX_UPLOAD_SIZE_MB)
- Maximum: 2MB (default, configurable via
Validation Errors
Symptom
422 Unprocessable Entity
{
"detail": [
{"loc": ["body", "userId"], "msg": "field required"}
]
}Solution
-
Check request format matches schema:
- Use camelCase for field names
- Include all required fields
- Match enum values exactly
-
Review API documentation:
# Open Swagger UI
open http://localhost:8000/docs- Validate request payload:
from src.schemas.anamnesis import AnamnesisRequest
# Test validation
try:
request = AnamnesisRequest(**payload)
except ValidationError as e:
print(e.errors())Performance Issues
Symptom
Slow response times (greater than 2 seconds)
Solution
- Check database query performance:
# Enable SQL logging
export DB_ECHO=true- Monitor AI service latency:
# Add timing logs in ai_client.py
start = time.time()
response = await client.post(...)
logger.info(f"AI call took {time.time() - start}s")- Check connection pool:
# In database/session.py
engine = create_async_engine(
settings.database_url,
pool_size=10, # Increase if needed
max_overflow=20
)- Profile slow endpoints:
uv run pytest --profileTest Failures
Symptom
FAILED src/api/ai_test.py::test_predict_diagnosisSolution
- Run tests with verbose output:
uv run pytest -vv- Check testcontainer logs:
uv run pytest --log-cli-level=DEBUG- Verify Docker is running:
docker ps- Clean test cache:
rm -rf .pytest_cache
uv run pytest --cache-clearGetting Help
If issues persist:
- Check service logs for error messages
- Review recent code changes
- Consult the Architecture documentation
- Check GitHub issues for similar problems
- Contact the development team
Last updated on